Myocardial Stiffness Evaluation Using Noninvasive Shear Wave Imaging in Healthy and Hypertrophic Cardiomyopathic Adults

2018 
Abstract Objectives The goal of our study was to investigate the potential of myocardial shear wave imaging (SWI) to quantify the diastolic myocardial stiffness (MS) (kPa) noninvasively in adult healthy volunteers (HVs) and its physiological variation with age, and in hypertrophic cardiomyopathy (HCM) populations with heart failure and preserved ejection function (HFpEF). Background MS is an important prognostic and diagnostic parameter of the diastolic function. MS is affected by physiological changes but also by pathological alterations of extracellular and cellular tissues. However, the clinical assessment of MS and the diastolic function remains challenging. SWI is a novel ultrasound-based technique that has the potential to provide intrinsic MS noninvasively. Methods We prospectively included 80 adults: 60 HV (divided into 3 groups: 20- to 39-year old patients [n = 20]; 40- to 59-year-old patients [n = 20]; and 60- to 79-year-old patients [n = 20]) and 20 HCM-HFpEF patients. Echocardiography, cardiac magnetic resonance imaging and biological explorations were achieved. MS evaluation was performed using an ultrafast ultrasound scanner with cardiac phased array. The fractional anisotropy of MS was also estimated. Results MS increased significantly with age in the HV group (the mean MS was 2.59 ± 0.58 kPa, 4.70 ± 0.88 kPa, and 6.08 ± 1.06 kPa for the 20- to 40-year-old, 40- to 60-year-old, and 60- to 80-year-old patient groups, respectively; p  Conclusions MS was found to increase with age in healthy adults and was significantly higher in HCM-HFpEF patients. Myocardial SWI has the potential to become a clinical tool for the diagnostic of diastolic dysfunction. (Non-invasive Evaluation of Myocardial Stiffness by Elastography [Elasto-Cardio]; NCT02537041 )
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    60
    Citations
    NaN
    KQI
    []