A Complex Fluviolacustrine Environment on Early Mars and Its Astrobiological Potentials

2018 
Abstract Chloride-bearing deposits and phyllosilicates-bearing units are widely distributed in the southern highlands of Mars, but these phases are rarely found together in fluviolacustrine environments. The study of the coexistence of these minerals can provide important insights into geochemistry, water activity, and ultimately the climate and habitability of early Mars. Here we use high-resolution compositional and morphological orbiter data to identify and characterize the context of diverse minerals in a Noachian fluviolacustrine environment west of Knobel crater (6.7°S, 226.8°W). The chlorides in this region are likely formed through the evaporation of brines in a closed topographic basin. The formation age of chlorides is older than 3.7 Ga, based on stratigraphic relationships identified and previously obtained crater retention ages. The timing of the alteration of basaltic materials to iron–magnesium smectites in relation to the chloride formation in this location is enigmatic and is unable to be ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    2
    Citations
    NaN
    KQI
    []