Evaporation-induced alterations in oscillation and flow characteristics of a sessile droplet on a rose-mimetic surface.

2021 
Strategic control of evaporation dynamics can help control oscillation modes and internal flow field in an oscillating sessile droplet. This article presents the study of an oscillating droplet on a bio-inspired "sticky" surface to better understand the nexus between the modes of evaporation and oscillation. Oscillation in droplets can be characterized by the number of nodes forming on the surface and is referred to as the mode of oscillation. An evaporating sessile droplet under constant periodic perturbation naturally self-tunes between different oscillation modes depending on its geometry. The droplet geometry evolves according to the mode of evaporation controlled by substrate topography. We use a bio-inspired, rose patterned, "sticky" hydrophobic substrate to perpetually pin the contact line of the droplet in order to hence achieve a single mode of evaporation for most of the droplet's lifetime. This allows the prediction of experimentally observed oscillation mode transitions at different excitation frequencies. We present simple scaling arguments to predict the velocity of the internal flow induced by the oscillation. The findings are beneficial to applications which seek to tailor energy and mass transfer rates across liquid droplets by using bio-inspired surfaces.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    0
    Citations
    NaN
    KQI
    []