Effect of iron treatment and equilibrium pH on kinetics of removal of some substituted phenols from synthetic wastewater onto Nostoc sp. biomass

2020 
Substituted phenols, such as 4-Nitrophenol (4-NP) and 2,4-Dichlorophenol (2,4-DCP), that are present in industrial wastewaters are considered as priority pollutants due to their toxic effects. Their removal by biosorption presents an eco-friendly, cost-effective method. The kinetics of removal of 4-NP and 2,4-DCP by untreated Nostoc sp. (UNB) and Fe-treated Nostoc sp. biomass (FNB) were studied at three different pH (4.0, 7.0 and 9.0). The highest sorption of both phenols (2.28 mg 4-NP and 1.51 mg 2,4-DCP g-1) coupled with the lowest cumulative percentage desorption was recorded with FNB at pH 7.0. The sorption of both phenols by UNB and FNB was best accounted for by pseudo-second-order kinetics. Compared to UNB, FNB had significantly higher equilibrium sorption capacities for both phenols at all the three pH values and also higher sorption rate constants of 4-NP at pH 4 and 9 and of 2,4-DCP at pH 4 and 7. The Fourier transform infrared spectroscopy (FTIR) analysis showed that -OH and COO- groups of UNB interacted with Fe+3. The sorption of 4-NP and 2,4-DCP on UNB was likely through H-bonding/structural cation bridging with the phenolic group, while their sorption onto FNB appeared to be a complexation reaction with very low reversibility.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    0
    Citations
    NaN
    KQI
    []