Surface modification of PDMS-based microfluidic devices with collagen using polydopamine as a spacer to enhance primary human bronchial epithelial cell adhesion

2020 
Polydimethylsiloxane (PDMS) is a silicone-based synthetic material that is used in various biomedical applications due to its properties, including transparency, flexibility, permeability to gases, and ease of use. Though PDMS facilitates and realizes the fabrication of complicated geometries at the micro and nano scales, it does not optimally interact with cells for adherence and proliferation. Different strategies have been proposed to render PDMS to enhance cell attachment. The majority of these surface modification techniques have been offered for a static cell culture system. However, dynamic cell culture systems such as organ-on-a-chip devices are demanding platforms that recapitulate the complexity of a living tissue microenvironment. For organ-on-a-chip platforms, PDMS surfaces are usually coated by ECM proteins, which occur as a result of physical, weak bonding between PDMS and ECM proteins, and this binding can be degraded when it is exposed to shear stresses. This work reports static and dynamic coating methods to covalently bind collagen within a PDMS-based microfluidic device using polydopamine (PDA). These coating methods were evaluated using water contact angle measurement and atomic force microscopy (AFM) to find the optimum coating conditions. The biocompatibility of collagen-coated PDMS devices was assessed by culturing primary human bronchial epithelial cells (HBECs) in microfluidic devices. It was shown that both PDA coating methods could be used to bind collagen, thereby improving cell adhesion (around three times higher) without showing any discernible difference. These results suggested that such a surface modification can be used to coat an extracellular matrix protein onto PDMS-based microfluidic devices.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    1
    Citations
    NaN
    KQI
    []