T cell response to myelin basic protein in the context of the multiple sclerosis-associated HLA-DR15 haplotype: peptide binding, immunodominance and effector functions of T cells.

1997 
Abstract In this study, we evaluated the role of the two functional HLA-DR heterodimers, DR2a (DR α paired with the β chain encoded by DRB5 * 0101) and DR2b (DR α paired with the β chain encoded by DRB1 * 1501), that are coexpressed in the multiple sclerosis (MS)-associated haplotype HLA-DR15 Dw2, in presenting myelin basic protein (MBP) peptides to MBP-specific T cell lines (TCL). Our results show that both HLA-DR molecules serve as restriction elements for HLA-DR15-restricted TCL. Slightly higher numbers of TCL use DR2a as restriction element, and the epitopes contained in the immunodominant C-terminal region (131–159) are uniquely restricted by DR2a. The immunodominant middle epitope (81–99) is recognized in the context of both DR2a and DR2b, but this specificity strongly dominates the DR2b-restricted T cell response. Overall, immunodominance in the MBP-specific T cell response correlated well with peptide binding to DR2a or DR2b, demonstrating that the affinity of MHC-peptide interactions is important for shaping the T cell response to this autoantigen. Furthermore, we show that binding of the middle MBP peptide to HLA-DR15 molecules prevents cleavage by cathepsin D, a protease abundantly found in endosomal processing compartments, and thus contributes to its immunodominance. Surprisingly, the restriction element employed by MBP-specific T cell clones influenced the effector function (i.e., cytotoxic activity) of T cells irrespective of their peptide fine specificity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    54
    Citations
    NaN
    KQI
    []