Thermodynamic and techno-economic performance comparison of two-stage series organic Rankine cycle and organic Rankine flash cycle for geothermal power generation from hot dry rock

2022 
Abstract To improve the utilization rate of geothermal resource using organic Rankine cycle (ORC), an organic Rankine flash cycle (ORFC) combined with insufficient evaporation and flash process is proposed to reduce the irreversibility of the power generation cycle. The thermodynamic performance and techno-economic performance of ORFC and two-stage series organic Rankine cycle (TSORC) are optimized, respectively. The effects of evaporation temperature, flash temperature and outlet dryness on the performance of two systems are discussed. The results show that with the increase of heat source temperature, the optimal operating condition value of the system increases, which leads to improving the thermodynamic and techno-economic performance significantly. R601a and R601 are the most suitable working fluids for TSORC and ORFC, respectively. The heat exchanger is the main component that causes the exergy destruction of the system, and its improvement potential is the highest in all components. The thermodynamic performance and techno-economic performances of ORFC are better than those of TSORC. The irreversible loss of the system can be reduced by the insufficient evaporation combined with flash separator.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    0
    Citations
    NaN
    KQI
    []