Energy spectra of KASCADE-Grande based on shower size measurements and different hadronic interaction models

2013 
KASCADE-Grande is dedicated for investigations of cosmic-ray air showers in the primary energy range from 10 PeV to 1 EeV. The multi-detector system allows us to reconstruct charged particles, electron and muon numbers for individual air showers with high accuracies. Based on the shower size ($N_{ch}$) spectra of the charged particle component, the all-particle energy spectrum of cosmic rays is reconstructed, where attenuation effects in the atmosphere are corrected by applying the constant intensity cut method. The energy calibration is performed by using CORSIKA simulations with high-energy interaction models QGSJET-II-2, QGSJET-II-4, EPOS 1.99 and SIBYLL 2.1, where FLUKA has been used as low-energy interaction model for all cases. In the different hadronic models, different abundances for shower particles are predicted. Such model differences in the observables will be compared and discussed in this contribution. Furthermore, by using data with increasing statistics, the updated energy spectra by means of different interaction models will be presented.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    2
    Citations
    NaN
    KQI
    []