Excited-state dynamics of guanosine in aqueous solution revealed by time-resolved photoelectron spectroscopy: experiment and theory.

2015 
Time-resolved photoelectron spectroscopy is performed on aqueous guanosine solution to study its excited-state relaxation dynamics. Experimental results are complemented by surface hopping dynamic simulations and evaluation of the excited-state ionization energy by Koopmans' theorem. Two alternative models for the relaxation dynamics are discussed. The experimentally observed excited-state lifetime is about 2.5 ps if the molecule is excited at 266 nm and about 1.1 ps if the molecule is excited at 238 nm. The experimental probe photon energy dependence of the photoelectron kinetic energy distribution suggests that the probe step is not vertical and involves a doubly-excited autoionizing state.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    7
    Citations
    NaN
    KQI
    []