Differential Deep Brain Stimulation Sites and Networks for Cervical vs. Generalized Dystonia

2021 
Abstract Dystonia is a debilitating disease with few conservative treatment options but many types of isolated dystonia can be effectively treated using deep brain stimulation (DBS) to the internal pallidum. While cervical and generalized forms of isolated dystonia have been targeted with a common approach to the posterior third of the nucleus, large-scale investigations between optimal stimulation sites and potential network effects in the two types of dystonia have not been carried out. Here, we retrospectively investigate clinical results following DBS for cervical and generalized dystonia in a multi-center cohort of 80 patients. We model DBS electrode placement based on pre- and postoperative imaging and introduce a novel approach to map optimal stimulation sites to anatomical space. Second, we analyse stimulation in context of a detailed pathway model of the subcortex to investigate the modulation of which tracts accounts for optimal clinical improvements. Third, we investigate stimulation in context of a broad-lense whole-brain functional connectome to illustrate potential multisynaptic network effects. Finally, we construct a joint model using local, tract- and network-based effects to explain variance in clinical outcomes in cervical and generalized dystonia. Our results show marked differences in optimal stimulation sites that map to the somatotopic structure of the internal pallidum. We further highlight that modulation of the pallidofugal main axis of the basal ganglia may be optimal for treatment of cervical dystonia, while pallidothalamic bundles account for effects in generalized dystonia. Finally, we show a common multisynaptic network substrate for both phenotypes in form of connectivity to cerebellum and somatomotor cortex. Our results suggest a multi-level model that could account for effectivity of treatment in cervical and generalized dystonia and could potentially help guide DBS programming and surgery, in the future.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    71
    References
    0
    Citations
    NaN
    KQI
    []