Listeria Membrane Protrusion Collapse: Requirement of Cyclophilin A for Listeria Cell-to-Cell Spreading

2018 
Background: Listeria generate actin-rich tubular protrusions at the plasma membrane that propel the bacteria into neighboring cells. The precise molecular mechanisms governing the formation of these protrusions remain poorly defined. Methods: In this study, we demonstrate that the prolyl cis-trans isomerase (PPIase) cyclophilin A (CypA) is hijacked by Listeria at membrane protrusions used for cell-to-cell spreading. Results: Cyclophilin A localizes within the F-actin of these structures and is crucial for their proper formation, as cells depleted of CypA have extended actin-rich structures that are misshaped and are collapsed due to changes within the F-actin network. The lack of structural integrity within the Listeria membrane protrusions hampers the microbes from spreading from CypA null cells. Conclusions: Our results demonstrate a crucial role for CypA during Listeria infections.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    6
    Citations
    NaN
    KQI
    []