An axion dark matter-induced echo of supernova remnants

2021 
Axions are a theoretically promising dark matter (DM) candidate. In the presence of radiation from bright astrophysical sources at radio frequencies, nonrelativistic DM axions can undergo stimulated decay to two nearly back-to-back photons, meaning that bright sources of radio waves will have a counterimage (''gegenschein'') in nearly the exact opposite spatial direction. The counterimage will be spectrally distinct from backgrounds, taking the form of a narrow radio line centered at $\nu = m_a/4\pi$ with a width determined by Doppler broadening in the DM halo, $\Delta \nu/\nu \sim 10^{-3}$. In this work, we show that the axion decay-induced echoes of supernova remnants may be bright enough to be detectable. Their non-detection may be able to set the strongest limits to date on axion DM in the $\sim 1-10 \, \mu$eV mass range where there are gaps in coverage from existing experiments.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    1
    References
    1
    Citations
    NaN
    KQI
    []