Protective effects of a hydrogen-rich preservation solution in a canine lung transplantation model.

2020 
Abstract Background Molecular hydrogen (H2) has protective effects against ischemia-reperfusion injury in various organs. Because they are easier to transport and safer to use than inhaled H2, H2-rich solutions are suitable for organ preservation. In this study, we examined the protective effects of an H2-rich solution for lung preservation in a canine left lung transplantation (LTx) model. Methods Ten beagles underwent orthotopic left LTx after 23 hours of cold ischemia followed by reperfusion for 4 hours. Forty-five minutes after reperfusion, the right main pulmonary artery was clamped to evaluate the function of the implanted graft. The beagles were divided into two groups: control (CON group, n=5) and hydrogen (H2 group, n=5). In the CON group, the donor lungs were flushed and immersed during cold preservation at 4°C using ET-Kyoto solution, and in the H2 group, these were flushed and immersed using H2-rich ET-Kyoto solution. Physiological assessments were performed during reperfusion. After reperfusion, the wet-to-dry ratios were determined, and histological examinations were performed. Results Significantly higher partial pressure of arterial oxygen and significantly lower partial pressure of carbon dioxide were observed in the H2 group than in the CON group (p=0.045 and p Conclusions Our results demonstrated that the H2-rich preservation solution attenuated ischemia-reperfusion injury in a canine left LTx model. (247 words)
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    3
    Citations
    NaN
    KQI
    []