Bio-Inspired Super Elastic Electro-Conductive Fiber for Wearable Electronics

2019 
Electroconductive fibers (E-fibers) with excellent flexibility and elasticity are crucial for the advancement of smart textiles for wearable electronics. However, the current metal-based conductive wires are not capable of satisfying the practical demands attributing to their limited stretchability and inferior antiabrasion ability. Herein, we report a superelastic and electroconductive fiber with a spring-like structure, inspired by the unique coiled tendril structures of climbing plants. The E-fiber is constructed by wrapping a flexible yet conductive carbon nanotube/polydimethylsiloxane (CNT/PDMS) composite yarn onto a polyester filament. In this system, the polyester filament provides mechanical robustness and stretchability, while the coiled CNT/PDMS composite yarn (C/P CY) offers sufficient conductivity. Notably, the as-fabricated E-fiber possesses high stretchability (165%), exceptional tensile force (660 cN), extraordinary antiabrasion ability, and remarkable electrical stability under various def...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    8
    Citations
    NaN
    KQI
    []