Influence of Shell Thickness and Surface Passivation on PbS/CdS Core/Shell Colloidal Quantum Dot Solar Cells

2014 
Cation-exchange has been used to synthesize PbS/CdS core/shell colloidal quantum dots from PbS starting cores. These were then incorporated as the active material in solar cell test devices using a solution-based, air-ambient, layer-by-layer spin coating process. We show that core/shell colloidal quantum dots can replace their unshelled counterparts with a similar band gap as the active layer in a solar cell device, leading to an improvement in open circuit voltage from 0.42 to 0.66 V. This improvement is attributed to a reduction in recombination as a result of the passivating shell. However, this increase comes at the expense of short circuit current by creating a barrier for transport. To overcome this, we first optimize the shell thickness by varying the conditions for cation-exchange to form the thinnest shell layer possible that provides sufficient surface passivation. Next, ligand exchange with a combination of halide and bifunctional organic molecules is used in conjunction with the core/shell str...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    65
    References
    110
    Citations
    NaN
    KQI
    []