Multiparametric quantitative MRI for the evaluation of dysthyroid optic neuropathy.

2021 
OBJECTIVE To evaluate the ability of quantitative MRI parameters for predicting dysthyroid optic neuropathy (DON). METHODS We retrospectively collected and analyzed the clinical features and 3.0 T MRI data of 59 patients with Graves orbitopathy (GO), with (n = 26) and without DON (n = 33). We compared MRI quantitative parameters, including the modified muscle index (mMI), proptosis, volume of intra-orbital fat, mean apparent diffusion coefficient value, and T2 value of the optic nerve among patients with and without DON. A logistic regression analysis was performed to identify the risk factors associated with DON. Moreover, we performed a receiver operating characteristic curve analysis and decision curve analysis to evaluate the diagnostic performance of the identified parameters for DON. RESULTS We studied 118 orbits (43 and 75 with and without DON, respectively). The mMI and mean T2 value of the optic nerve were significantly greater in orbits with DON (p < 0.001). A greater mMI at 21 mm (odds ratio (OR), 1.039; 95% confidence interval (CI): 1.019, 1.058) and higher mean T2 value of the optic nerve (OR, 1.035; 95% CI: 1.017, 1.054) were associated with a higher risk of DON. A model combining the mMI at 21 mm and mean T2 values for the optic nerve effectively predicted DON in patients with GO, with a sensitivity and specificity of 95.3% and 76%, respectively. CONCLUSION A quantitative MRI parameter combining the mMI at 21 mm and mean T2 value of the optic nerve can be an effective imaging marker for identifying DON. KEY POINTS • Patients with GO and DON had greater mMI than those without DON. • Optic nerves in patients with DON demonstrated an increased T2 value. • The quantitative MRI parameter combining the mMI at 21 mm and mean T2 value of the optic nerve is the most effective method for diagnosing DON.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    0
    Citations
    NaN
    KQI
    []