Mode of action: oxalate crystal-induced renal tubule degeneration and glycolic acid-induced dysmorphogenesis--renal and developmental effects of ethylene glycol.

2005 
Ethylene glycol can cause both renal and developmental toxicity, with metabolism playing a key role in the mode of action (MOA) for each form of toxicity. Renal toxicity is ascribed to the terminal metabolite oxalic acid, which precipitates in the kidney in the form of calcium oxalate crystals and is believed to cause physical damage to the renal tubules. The human relevance of the renal toxicity of ethylene glycol is indicated by the similarity between animals and humans of metabolic pathways, the observation of renal oxalate crystals in toxicity studies in experimental animals and human poisonings, and cases of human kidney and bladder stones related to dietary oxalates and oxalate precursors. High-dose gavage exposures to ethylene glycol also cause axial skeletal defects in rodents (but not rabbits), with the intermediary metabolite, glycolic acid, identified as the causative agent. However, the mechanism by which glycolic acid perturbs development has not been investigated sufficiently to develop a pl...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    95
    References
    33
    Citations
    NaN
    KQI
    []