Q-balls of clusterized baryonic matter

2017 
Properties of baryonic matter made of nucleons and α-particles are studied within a relativistic mean-field (RMF) model. The Lagrangian describing the relativistic field ϕ of α-particles is allowed to contain also self-interaction terms. Various types of RMF parametrizations are employed to calculate the energy of α-particles embedded in the baryonic matter. We first consider baryonic systems with small admixtures of α-particles and calculate the energy spectrum as a function of baryon density. Then we turn to the case of pure α-matter and derive once again the energy spectrum, this time as a function of α-particle density, with and without quartic self-interaction. In the second part of the paper, we focus on the ground-state properties (energy per particle, radii of the spherical lumps made of α-particles) of charge neutralized Q-balls formed of baryonic α-particles for the case of linear σ and ω fields and nonlinear (quartic+sextic) self-interactions of the ϕ field.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    12
    Citations
    NaN
    KQI
    []