On the application of photocatalyst-sorbent composite materials for arsenic(III) remediation: insights from kinetic adsorption modelling

2020 
Abstract TiO2–Fe2O3 composites show great promise for the removal of arsenic(III) from drinking water: this single material combines the photocatalytic capabilities of TiO2 for the oxidation of arsenite (i.e. As(III)) with the high adsorption capacity of iron oxides towards the arsenate (i.e. As(V)) subsequently produced. To design an effective treatment, it is necessary to balance high sorbent concentrations, providing long filter lifetimes, with low photocatalyst concentrations, to achieve effective penetration of light into the system. In this work, we construct a predictive model using experimentally determined As(III) adsorption isotherms and kinetics to estimate arsenic treatment plant lifetimes. We considered sorbent loading, treatment time, and batch treatment versus continuous-flow. Our model indicated that batch treatment is more efficient than continuous-flow at low sorbent concentrations ( 100 g L−1 sorbent could operate for an entire year without media replacement. This work highlights the important implications of sorbent concentration when we consider the multifunctional photocatalysts-sorbent system, and highlights the need for further experimental work to design efficient arsenic treatment plants.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    6
    Citations
    NaN
    KQI
    []