Enhanced separation efficiency of photoinduced charges for antimony-doped tin oxide (Sb-SnO2)/TiO2 heterojunction semiconductors with varied Sb doping concentration

2014 
In this paper, antimony-doped tin oxide (Sb-SnO2) nanoparticles were synthesized with varied Sb doping concentration, and the Sb-SnO2/TiO2 heterojunction semiconductors were prepared with Sb-SnO2 and TiO2. The separation efficiency of photoinduced charges was characterized with surface photovoltage (SPV) technique. Compared with Sb-SnO2 and TiO2, Sb-SnO2/TiO2 presents an enhanced separation efficiency of photoinduced charges, and the SPV enhancements were estimated to be 1.40, 1.43, and 1.99 for Sb-SnO2/TiO2 composed of Sb-SnO2 with the Sb doping concentration of 5%, 10%, and 15%, respectively. To understand the enhancement, the band structure of Sb-SnO2 and TiO2 in the heterojunction semiconductor was determined, and the conduction band offsets (CBO) between Sb-SnO2 and TiO2 were estimated to be 0.56, 0.64, and 0.98 eV for Sb-SnO2/TiO2 composed of Sb-SnO2 with the Sb doping concentration of 5%, 10%, and 15%, respectively. These results indicate that the separation efficiency enhancement is resulting from...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    2
    Citations
    NaN
    KQI
    []