Polymerized hybrid perovskites with enhanced stability, flexibility and lattice rigidity

2021 
The intrinsic soft lattice nature of organometal halide perovskites (OHPs) makes them very tolerant to defects and ideal candidates for solution-processed optoelectronic devices. However, the soft lattice results in low stability towards external stresses such as heating and humidity, high density of phonons and strong electron-phonon coupling (EPC). Here, it is demonstrated that the OHPs with unsaturated 4-vinylbenzylammonium (VBA) as organoammonium cations can be polymerized without damaging the perovskite structure and its tolerance to defects. The polymerized perovskites show enhanced stability and flexibility compared to regular three-dimensional and two-dimensional (2D) perovskites. Furthermore, the polymerized 4-vinylbenzylammonium group improves perovskite lattice rigidity substantially, resulting in a reduced non-radiative recombination rate because of suppressed electron-phonon coupling, and enhanced carrier mobility because of suppressed phonon scattering. 2D polymerized perovskite light-emitting diodes (PeLEDs) with strong electroluminescence at room temperature, and quasi-2D PeLEDs with an external quantum efficiency (EQE) of 23.2% and enhanced operation stability are demonstrated. The work has opened a new way of enhancing the intrinsic stability and optoelectronic properties of OHPs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    67
    References
    1
    Citations
    NaN
    KQI
    []