Dramatic Enhancement of Optoelectronic Properties in Electrophoretically Deposited C60-Graphene Hybrids

2019 
Fullerene (C60) and multilayer graphene hybrid devices were fabricated using electrophoretic deposition, where the C60 clusters are electrically charged upon the application of an external bias in a polar solvent, acetonitrile, mixed with toluene, which facilitates their deposition on the graphene membranes. Raman spectroscopy unveiled the unique vibrational fingerprints associated with the A2g mode of the C60 molecules at ∼1453 cm–1, while blue shifts of ∼6 and ∼17 cm–1 were also attributed to the G- and 2D-bands of the hybrids relative to bare graphene, suggestive of p-doped graphene. The intensity ratio of the G- and the 2D-bands I2D/IG (hybrid) dropped to ∼0.18 from ∼0.3 (bare graphene), and this reduction in I2D/IG is also a signature of hole-doped graphene, consistent with the relatively strong electron accepting nature of C60. The electronic conductance of the two-terminal hybrid devices increased relative to bare graphene at room temperature which was attributed to the increased carrier density, a...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    14
    Citations
    NaN
    KQI
    []