Development and validation of the international blue-light imaging for Barrett's neoplasia classification

2019 
Abstract Background and Aims Detecting subtle Barrett's neoplasia during surveillance endoscopy can be challenging. Blue-light imaging (BLI) is a novel advanced endoscopic technology with high intensity contrast imaging which may improve the identification of Barrett's neoplasia. The aim of this study was to develop and validate the first classification to enable characterisation of neoplastic and non-neoplastic Barrett's using BLI. Methods In phase 1, descriptors pertaining to neoplastic and non-neoplastic Barrett's were identified to form the classification (BLINC). Phase 2 involved validation of these component criteria by 10 expert endoscopists assessing 50 BLI images. In phase 3, a web-based training module was developed to enable 15 general (nonexpert) endoscopists to use BLINC. They then validated the classification with an image assessment exercise in phase 4 and their pre- and post-training results were compared. Results In Phase 1, the descriptors were grouped into color, pit, and vessel pattern categories to form the classification. In Phase 2, the sensitivity of neoplasia identification was 96.0% with a very good level of agreement among the experts (K=0.83). In Phase 3, 15 general endoscopists completed the training module. In Phase 4, their pretraining sensitivity (85.3%) improved significantly to 95.7% post-training with a good level of agreement (K=0.67). Conclusion We developed and validated a new classification system (BLINC) for the optical diagnosis of Barrett's neoplasia using BLI. Despite the limitations of this image-based study with a high prevalence of neoplasia, we believe it has the potential to improve the optical diagnosis of Barrett's neoplasia given the high degree of sensitivity (96%) noted. It is also a promising tool for training in Barrett's optical diagnosis using BLI.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    8
    Citations
    NaN
    KQI
    []