Clinical study of ex vivo photoacoustic imaging in endoscopic mucosal resection tissues

2015 
Accurate endoscopic detection and dysplasia in patients with Barrett’s esophagus (BE) remains a major unmet clinical need. Current diagnosis use multiple biopsies under endoscopic image guidance, where up to 99% of the tissue remains unsampled, leading to significant risk of missing dysplasia. We conducted an ex vivo clinical trial using photoacoustic imaging (PAI) in patients undergoing endoscopic mucosal resection (EMR) with known high-grade dysplasia for the purpose of characterizing the esophageal microvascular pattern, with the long-term goal of performing in vivo endoscopic PAI for dysplasia detection and therapeutic guidance. EMR tissues were mounted immediately on an agar layer and covered with ultrasound gel. Digital photography guided the placement of the PAI transducer (40 MHz center frequency). The luminal side of the specimen was scanned over a field of view of 14 mm (width) by 15 mm (depth) at 680, 750, 824, 850 and 970 nm. Acoustic images were simultaneously acquired. Tissues were then sliced and fixed in formalin for histopathology with H and E staining. Analysis consisted of co-registration and correlation between the intrinsic PAI features and the histological images. The initial PAI + ultrasound images from 8 BE patients have demonstrated the technical feasibility of this approach and point to the potential of PAI to reveal the microvascular pattern within EMR specimens. There are several technical factors to be considered in rigorous interpretation of the PAI characteristics, including the loss of blood from the ex vivo specimens and the limited depth penetration of the photoacoustic signal.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    10
    References
    3
    Citations
    NaN
    KQI
    []