Nephroprotective activitiy of Aframomum melegueta seeds extract against diclofenac-induced acute kidney injury: A mechanistic study

2021 
Abstract Ethnopharmacological relevance In Africa, Aframomum species have been traditionally used to treat illnesses such as inflammation, hypertension, diarrhea, stomachache and fever. Moreover, Aframomum melegueta seed extracts (AMSE) are used in traditional medicine to relieve stomachaches and inflammatory diseases. Aim Chronic administration of diclofenac (DIC) has been reported to cause acute kidney injury (AKI), which is a serious health condition. The nephroprotective effect of AMSE is yet to be elucidated. Accordingly, this study aims to investigate the phytoconstituents of standardized AMSE, evaluate its nephroprotective effects against DIC-induced AKI in rats, and elaborate its underlying molecular mechanisms. Materials and methods The quantitative estimation of major AMSE constituents and profiling of its secondary metabolites were conducted via RP-HPLC and LC-ESI/Triple TOF/MS, respectively. Next, DIC (50 mg/kg)-induced AKI was achieved in Sprague-Dawley rats and DIC-challenged rats were administered AMSE (100 and 200 mg/kg) orally. All treatments were administered for five consecutive days. Blood samples were collected and the sera were used for estimating creatinine, urea and, kidney injury molecule (KIM)-1 levels. Kidney specimens were histopathologically assessed and immunohistochemically examined for c-Myc expression. A portion of the kidney tissue s was homogenized and examined for levels of oxidative stress markers (MDA and GSH). Heme oxygenase (HO)-1, TNF-α, IL-6, Bax, Bcl2 and caspase-3 renal levels were quantified by ELISA. Moreover, the protein expression levels of NF-ҡB was quantified using western blot analysis, whereas mRNA expression levels of AMPK, SIRT-1, nuclear factor erythroid-2-related factor (Nrf2) and STAT3 were detected using qRT-PCR) in the remaining kidney tissues. Results Standardized AMSE was shown to primarily contain 6-gingerol, 6-shogaol and 6-paradol among the 73 compounds that were detected via LC-ESI/Triple TOF/MS including phenolic acids, hydroxyphenylalkanes, diarylheptanoids and fatty acids. Relative to DIC-intoxicated rats, AMSE modulated serum creatinine, urea, KIM-1, renal MDA, TNF-α, IL-6, Bax, and caspase-3 levels. AMSE has also improved renal tissue architecture, enhanced GSH and HO-1 levels, and upregulated renal Nrf2, AMPK, and SIRT-1 mRNA expression levels. Furthermore, AMSE suppressed p-NF-ҡB65 protein and STAT3 mRNA expression, and further reduced c-myc immunohistochemical expression in renal tissues. Overall, our findings revealed that AMSE counteracted DIC-induced AKI via its antioxidant, anti-inflammatory, and antiapoptotic activities. Moreover, AMSE activated Nrf2/HO1 and AMPK/SIRT1, and inhibited NF-ҡB/STAT3 signaling pathways. Therefore, AMSE is a promising agent for inhibiting DIC-induced nephrotoxicity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    81
    References
    1
    Citations
    NaN
    KQI
    []