SDF-1/CXCR4 axis coordinates crosstalk between subchondral bone and articular cartilage in osteoarthritis pathogenesis

2019 
Abstract Crosstalk between subchondral bone and articular cartilage is considered a central feature of osteoarthritis (OA) initiation and progression, but its underlying molecular mechanism remains elusive. Meanwhile, specific administration of drugs in subchondral bone is also a great challenge during investigation of the process. We here explore the role of stromal cell-derived factor 1 (SDF-1)/C-X-C chemokine receptor type 4 (CXCR4) axis in the crosstalk between subchondral bone and articular cartilage in OA pathogenesis, using osmotic infusion pumps implanted in tibial subchondral bone directly to ensure quantitative, continuous and steady drug delivery over the entire experiment. We found that increased SDF-1 in subchondral bone firstly induced subchondral bone deterioration by erroneous Mesenchymal Stem Cells (MSCs) recruitment and excessive bone resorption in anterior cruciate ligament transection (ACLT) mice. Deterioration of subchondral bone then led to the traverse of SDF-1 from subchondral bone to overlying cartilage. Finally, SDF-1 from underlying subchondral bone combined with CXCR4 in chondrocytes to induce articular cartilage degradation by promoting the shift of transforming growth factor-β receptor type I (TβRI) in chondrocytes from activin receptor-like kinase 5 (ALK5) to activin receptor-like kinase 1 (ALK1). More importantly, specific inhibition of SDF-1/CXCR4 axis in ACLT rats attenuated OA by stabilizing subchondral bone microarchitecture, reducing SDF-1 in cartilage and abrogating the shift of TβRI in chondrocytes. Our data demonstrate that the SDF-1/CXCR4 axis may coordinate the crosstalk between subchondral bone and articular cartilage in OA pathogenesis. Therefore, specific inhibition of SDF-1/CXCR4 axis in subchondral bone or intervention in SDF-1 traverse may be therapeutic targets for OA.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    17
    Citations
    NaN
    KQI
    []