Structural, magnetic, and magnetothermal properties of the Tb0.3Dy0.7Co2 compound

2011 
A complex investigation of the structural, magnetic, and magnetothermal properties of the Tb0.3Dy0.7Co2 compound synthesized with the use of high-purity rare-earth metals has been performed. The phase composition has been controlled using the X-ray structural analysis, and the topology of the alloy surface has been investigated using atomic-force microscopy. It has been established that the Tb0.3Dy0.7Co2 compound is single-phase, while the samples selected for measurements possess a clearly pronounced texture. The magnetization has been measured using a vibrating-sample magnetometer in the fields up to 100 kOe in a temperature range from 4.2 to 200 K. The Curie temperature of the compound is 170 K. The data on the temperature dependence of heat capacity of Tb0.3Dy0.7Co2 have been obtained. The magnetocaloric effect ΔT has been measured by a direct method in the fields up to 18 kOe applied both along and perpendicularly to the texture axis. The anisotropic behavior of the magnitude ΔT for this compound, which possesses the cubic structure, has been found. The maximum value of the magnetocaloric effect ΔT = 2.3 K (ΔH = 18 kOe) has been observed upon applying the magnetic field along the texture axis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    6
    References
    6
    Citations
    NaN
    KQI
    []