Printed graphene oxide-based membranes for gas separation and carbon capture

2022 
Abstract Graphene oxide (GO)-based separation membranes have demonstrated the great potential to separate molecules and ions by the interlayer spacing with tunable nano-sized channels. The scalable fabrication of GO-based gas separation membranes, however, remains challenging, although a few preparation approaches have been reported. In this work, we present for the first time that the co-solvent ink-jet printing, as a fast and scalable method, can be utilized for scalable GO-based gas separation membrane preparation. Large-area (>100 cm2), ultrathin, and high-quality GO membrane was successfully deposited on commercial polysulfone (PS) support, and characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction, et al., Selective hydrogen (H2) and helium (He) transport over carbon dioxide (CO2) and nitrogen (N2) was demonstrated for the printed GO membrane. To further explore the separation potential of the printed GO-based gas membrane, additives for facilitated molecular transport were incorporated during the membrane printing process. By inserting CO2-philic agents into the printed GO membrane, highly efficient separation of CO2 from N2 was achieved with CO2/N2 selectivity of 70 and CO2 permeance as high as 2,500 GPU. The strategy proposed here may provide guidance for large-scale GO-based gas separation membrane production and a versatile approach for applying other functional 2-dimensional materials towards the membrane separation application.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    63
    References
    0
    Citations
    NaN
    KQI
    []