Lewis fry Richardson Medal Lecture – How many modes are neededto predict climate bifurcations?: Lessons from an experiment

2021 
Abstract. According to everyone’s experience, predicting the weather reliably over more than 8 days seems an impossible task for our best weather agencies. At the same time, politicians and citizens are asking scientists for climate projections several decades into the future to guide economic and environmental policies, especially regarding the maximum admissible emissions of CO2. To what extent is this request scientifically admissible? In this lecture we will investigate this question, focusing on the topic of predictions of transitions between metastable states of the atmospheric or oceanic circulations. Two relevant exemples are the switching between zonal and blocked atmospheric circulation at midlatitudes and the alternance of El Nino and La Nina phases in the Pacific ocean. The main issue is whether present climate models, that necessarily have a finite resolution and a smaller number of degrees of freedom than the actual terrestrial system, are able to reproduce such spontaneous or forced transitions. To do so, we will draw an analogy between climate observations and results obtained in our group on a laboratory-scale, turbulent, von Karman flow, in which spontaneous transitions between different states of the circulation take place. We will detail the analogy, and investigate the nature of the transitions, the number of degrees of freedom that characterizes the latter and discuss the effect of reducing the number of degrees of freedom in such systems. We will also discuss the role of fluctuations and their origin, and stress the importance of describing very small scales to capture fluctuations of correct intensity and scale.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []