Evaluation and prospects of nanomaterial-enabled innovative processes and devices for water disinfection: A state-of-the-art review

2020 
Abstract This study provided an overview of established and emerging nanomaterial (NM)-enabled processes and devices for water disinfection for both centralized and decentralized systems. In addition to a discussion of major disinfection mechanisms, data on disinfection performance (shortest contact time for complete disinfection) and energy efficiency (electrical energy per order; EEO) were collected enabling assessments firstly for disinfection processes and then for disinfection devices. The NM-enabled electro-based disinfection process gained the highest disinfection efficiency with the lowest energy consumption compared with physical-based, peroxy-based, and photo-based disinfection processes owing to the unique disinfection mechanism and the direct mean of translating energy input to microbes. Among the established disinfection devices (e.g., the stirred, the plug-flow, and the flow-through reactor), the flow-through reactor with mesh/membrane or 3-dimensional porous electrodes showed the highest disinfection performance and energy efficiency attributed to its highest mass transfer efficiency. Additionally, we also summarized recent knowledge about current and potential NMs separation and recovery methods as well as electrode strengthening and optimization strategies. Magnetic separation and robust immobilization (anchoring and coating) are feasible strategies to prompt the practical application of NM-enabled disinfection devices. Magnetic separation effectively solved the problem for the separation of evenly distributed particle-sized NMs from microbial solution and robust immobilization increased the stability of NM-modified electrodes and prevented these electrodes from degradation by hydraulic detachment and/or electrochemical dissolution. Furthermore, the study of computational fluid dynamics (CFD) was capable of simulating NM-enabled devices, which showed great potential for system optimization and reactor expansion. In this overview, we stressed the need to concern not only the treatment performance and energy efficiency of NM-enabled disinfection processes and devices but also the overall feasibility of system construction and operation for practical application.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    146
    References
    23
    Citations
    NaN
    KQI
    []