Interaction of dipalmitoyl‐phosphatidylcholine with calf thymus histone H1

2009 
The interaction between dipalmitoyl-phosphatidylcholine and calf thymus histone H1 has been studied. A protein-phospholipid complex, resulting from this interaction, has been isolated by centrifugation in a sucrose gradient. The phospholipid-histone interaction causes an increase in the α-helix content of the protein; the corresponding conformational transition is observed by CD studies in the far-u.v. region. The only tyrosine residue of the protein can be advantageously used as an intrinsic fluorescent probe; thus, fluorescence spectra indicate that protein folding induced by phospholipids is concomitant with the tyrosine transfer into a more hydrophobic environment. The trypsin-resistant core of the histone is also folded in the presence of the phospholipid but the conformational transition occurs at lower lipid concentration than for the intact protein. Fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene indicates that the protein shifts the transition temperature of the phospholipid from 41.5 to 44.0°. Secondary structure prediction of the trypsin-resistant core of the histone indicates the existence of an amphipathic helix that could be responsible for the lipid-protein interaction.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    18
    Citations
    NaN
    KQI
    []