H12CN and H13CN excitation analysis in the circumstellar outflow of R Scl

2016 
Abridged. The 12CO/13CO ratio in the circumstellar envelope (CSE) of asymptotic giant branch (AGB) stars has been extensively used as the tracer of the photospheric 12C/13C ratio. However, spatially-resolved ALMA observations of R Scl, a carbon rich AGB star, have shown that the 12CO/13CO ratio is not consistent over the entire CSE. Hence, it can not necessarily be used as a tracer of the 12C/13C ratio. The most likely hypothesis to explain the observed discrepancy between the 12CO/13CO and 12C/13C ratios is CO isotopologue selective photodissociation by UV radiation. Unlike the CO isotopologue ratio, the HCN isotopologue ratio is not affected by UV radiation. Therefore, HCN isotopologue ratios can be used as the tracer of the atomic C ratio in UV irradiated regions. We have performed a detailed non-LTE excitation analysis of circumstellar H12CN and H13CN line emission around R Scl, observed with ALMA and APEX, using a radiative transfer code, ALI. The spatial extent of the molecular distribution for both isotopologues is constrained based on the spatially resolved H13CN(4-3) ALMA observations. We find fractional abundances of H12CN/H2 = (5.0 +\- 2.0) x 10^{-5} and H13CN/H2 = (1.9 +\- 0.4) x 10^{-6} in the inner wind (r < (2.0 +\- 0.25) x 10^{15} cm) of R Scl. The derived circumstellar isotopologue ratio of H12CN/H13CN = 26.3 +\- 11.9 is consistent with the photospheric ratio of 12C/13C ~ 19 \pm 6. We show that the circumstellar H12CN/H13CN ratio traces the photospheric 12C/13C ratio. These results support the previously proposed explanation that CO isotopologue selective-shielding is the main factor responsible for the observed discrepancy between 12C/13C and 12CO/13CO ratios in the inner CSE of R Scl. This indicates that UV radiation impacts on the CO isotopologue ratio.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    9
    Citations
    NaN
    KQI
    []