Effect of Nanogap Morphology on Plasmon Coupling

2019 
Plasmon coupling is the fundamental principle by which the optical resonances in nanoparticle assemblies are tuned. Interactions of plasmons among nanoparticles in close proximity create plasmon coupling modes whose energies are sensitive to the nanogap parameters. Whereas many studies have focused on the gap distances, we herein probe the effect of gap morphology on plasmon coupling. Dimers that are prepared by adsorbing perfectly round ultra-uniform Au nanospheres (AuNSs) onto the faces, edges, and vertices of Au nanocubes (AuNCs) present distinctly different nanogap morphologies. Dark-field single-particle scattering spectroscopy reveals that the longitudinal plasmon coupling mode shifts to lower energies as the AuNS forms a nanogap with parts of the AuNC with higher curvature. Simulation spectra are also consistent with this observation. Our calculations indicate that the much larger charge density at the vertex or edge of a AuNC lowers the plasmon coupling energy through the contribution of the Coulo...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    17
    Citations
    NaN
    KQI
    []