Bumetanide, an Inhibitor of Cation-chloride Cotransporter Isoform 1, Inhibits γ-Aminobutyric Acidergic Excitatory Actions and Enhances Sedative Actions of Midazolam in Neonatal Rats

2013 
BACKGROUND: It has been shown that γ-aminobutyric acid exerts excitatory actions on the immature brain due to the increased expression of Na(+)-K(+)-2Cl(-) cotransporter isoform 1. The authors sought to clarify whether midazolam, a γ-aminobutyric acid-mimetic hypnotic agent, causes neuronal excitation that can be blocked by bumetanide, a selective inhibitor of Na(+)-K(+)-2Cl(-) cotransporter isoform 1. Furthermore, the authors examined whether bumetanide potentiates the sedative effects of midazolam in neonatal rats. METHODS: The authors measured the effects of midazolam with or without bumetanide on the cytosolic Ca(2+) concentration ([Ca](2+)(i)) in hippocampal slices (n=3 in each condition) from rats at postnatal days 4, 7, and 28 (P4, P7, and P28) using fura-2 microfluorometry. Neuronal activity in the hippocampus and thalamus after intraperitoneal administration of midazolam with or without bumetanide was estimated by immunostaining of phosphorylated cyclic adenosine monophosphate-response element-binding protein (n=12 in each condition). Furthermore, the authors assessed effects of bumetanide on the sedative effect of midazolam by measuring righting reflex latency (n=6 in each condition). RESULTS: Midazolam significantly increased [Ca](2+)(i) in the CA3 area at P4 and P7 but not at P28. Bumetanide inhibited midazolam-induced increase in [Ca](2+)(i). Midazolam significantly up-regulated phosphorylated cyclic adenosine monophosphate-response element-binding protein expression in a bumetanide-sensitive manner in the hippocampus at P7 but not P28. Bumetanide enhanced the sedative effects of midazolam in P4 and P7 but not P28 rats. CONCLUSION: These results suggest that γ-aminobutyric acid A receptor-mediated excitation plays an important role in attenuated sedative effects of midazolam in immature rats.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    9
    Citations
    NaN
    KQI
    []