Intelligent Nanocomposites with Intrinsic Blood–Brain‐Barrier Crossing Ability Designed for Highly Specific MR Imaging and Sonodynamic Therapy of Glioblastoma

2020 
The blood-brain barrier (BBB) is the most important obstacle to improving the clinical outcomes of diagnosis and therapy of glioblastoma. Thus, the development of a novel nanoplatform that can efficiently traverse the BBB and achieve both precise diagnosis and therapy is of great importance. Herein, an intelligent nanoplatform based on holo-transferrin (holo-Tf) with in situ growth of MnO2 nanocrystals is constructed via a reformative mild biomineralization process. Furthermore, protoporphyrin (ppIX), acting as a sonosensitizer, is then conjugated into holo-Tf to obtain MnO2 @Tf-ppIX nanoparticles (TMP). Because of the functional inheritance of holo-Tf during fabrication, TMP can effectively traverse the BBB for highly specific magnetic resonance (MR) imaging of orthotopic glioblastoma. Clear suppression of tumor growth in a C6 tumor xenograft model is achieved via sonodynamic therapy. Importantly, the experiments also indicate that the TMP nanoplatform has satisfactory biocompatibility and biosafety, which favors potential clinical translation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    25
    Citations
    NaN
    KQI
    []