RUSC2 and WDR47 oppositely regulate kinesin-1-dependent distribution of ATG9A to the cell periphery

2021 
Autophagy-related protein 9 (ATG9) is a transmembrane protein component of the autophagy machinery that cycles between the trans-Golgi network (TGN) in the perinuclear area and other compartments in the peripheral area of the cell. In mammalian cells, export of the ATG9A isoform from the TGN into ATG9A-containing vesicles is mediated by the adaptor protein 4 (AP-4) complex. However, the mechanisms responsible for the subsequent distribution of these vesicles to the cell periphery is unclear. Herein we show that the AP-4-accessory protein RUSC2 couples ATG9A-containing vesicles to the plus-end-directed microtubule motor kinesin-1 via an interaction between a disordered region of RUSC2 and the kinesin-1 light chain (KLC). This interaction is counteracted by the microtubule-associated WD40-repeat domain 47 protein (WDR47). These findings uncover a mechanism for the peripheral distribution of ATG9A-containing vesicles, involving the function of RUSC2 as a kinesin-1 adaptor and WDR47 as a negative regulator of this function.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    91
    References
    1
    Citations
    NaN
    KQI
    []