Discovery and Optimization of Thiazolidinyl and Pyrrolidinyl Derivatives as Inhaled PDE4 Inhibitors for Respiratory Diseases

2017 
Phosphodiesterase 4 (PDE4) is a key cAMP-metabolizing enzyme involved in the pathogenesis of inflammatory disease, and its pharmacological inhibition has been shown to exert therapeutic efficacy in chronic obstructive pulmonary disease (COPD). Herein, we describe a drug discovery program aiming at the identification of novel classes of potent PDE4 inhibitors suitable for pulmonary administration. Starting from a previous series of benzoic acid esters, we explored the chemical space in the solvent-exposed region of the enzyme catalytic binding pocket. Extensive structural modifications led to the discovery of a number of heterocycloalkyl esters as potent in vitro PDE4 inhibitors. (S*,S**)-18e and (S*,S**)-22e, in particular, exhibited optimal in vitro ADME and pharmacokinetics properties and dose-dependently counteracted acute lung eosinophilia in an experimental animal model. The optimal biological profile as well as the excellent solid-state properties suggest that both compounds have the potential to be...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    9
    Citations
    NaN
    KQI
    []