Pivotal Role of Reactive Oxygen Species as Intracellular Mediators of Hyperthermia-induced Apoptosis

2000 
Abstract The effects of cellular antioxidant capacity on hyperthermia (HT)-induced apoptosis and production of antiapoptotic heat shock proteins (HSPs) were investigated in HL-60 cells and in HL-60AR cells that are characterized by an elevated endogenous catalase activity. Exposure of both cell lines to 43 °C for 1 h initiated apoptosis. Apoptosis peaked at 3–6 h after heat exposure in the HL-60 cells. Whereas HL-60AR cells were partially protected against HT-induced apoptosis at these early time points, maximal levels of apoptosis were detected later, i.e. 12–18 h after heat exposure. This differential induction of apoptosis was directly correlated to the induction of the antiapoptotic HSP27 and HSP70. In particular, in the HL-60 cells HSP27 was significantly induced at 12–18 h after exposure to 43 °C when apoptosis dropped. In contrast, coinciding with the late onset of apoptosis in HL-60AR cells at that time HL-60AR cells lacked a similar HSP response. In line with the higher antioxidant capacity HL-60AR cells accumulated reactive oxygen species to a lesser degree than HL-60 cells after heat treatment. Protection from HT-induced apoptosis as well as diminished heat-induced HSP27 expression was also observed after cotreatment of HL-60 cells with 43 °C and catalase but not with superoxide dismutase. These data emphasize the pivotal role of reactive oxygen species for HT induced pro- and antiapoptotic pathways.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    103
    Citations
    NaN
    KQI
    []