Mechanical behaviors of conjugate-flawed rocks subjected to coupled static–dynamic compression

2021 
Conjugate flaws widely exist in rock masses and play a significant role in their deformation and strength properties. Understanding the mechanical behaviors of rock masses containing conjugate flaws is conducive to rock engineering stability assessment and the related supporting design. This study experimentally investigates the mechanical properties of conjugate-flawed sandstone specimens under coupled static–dynamic compression, thereby providing insight into how conjugate fractures interact to produce tracing tensional joints. Results indicate that the coupled compressive strength and the dynamic elastic modulus of conjugate-flawed rock specimens show remarkable loading rate dependence. For a fixed strain rate, the specimen with a static pre-stress equal to 60% of its uniaxial compressive strength has the highest coupled strength. Besides, both higher static pre-stress and strain rate can induce smaller mean fragment size and greater fractal dimension of the specimen, corresponding to a more uniform distribution of the broken fragments with smaller sizes. When the static pre-stress is lower than 80%UCS, the flawed specimen under a higher strain rate is characterized by higher absorbed energy. However, when the pre-stress equals 80%UCS, the value of the energy absorbed by the specimen in the dynamic loading process is negative due to the release of the preexisting considerable elastic strain energy input from the static pre-loading. As for the failure modes, cracks always penetrate the preexisting ipsilateral flaw tips to form anti-wing cracks. Under dynamic loading, the conjugate-flawed specimen generally shows tensile failure at a low strain rate, while the shear failure dominates at a high strain rate. In addition, based on progressive failure processes of the conjugate-flawed rock specimens, the evolution of tracing tensional joints in the field is discussed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    0
    Citations
    NaN
    KQI
    []