Early atypical signs and insula hypometabolism predict survival in multiple system atrophy.

2021 
OBJECTIVE We aim to search for predictors of survival among clinical and brain 18F-FDG positron emission tomography (PET) metabolic features in our cohort of patients with multiple system atrophy (MSA). METHODS We included patients with a 'probable' MSA diagnosis for whom a clinical evaluation and a brain PET were performed early in the course of the disease (median 3 years, IQR 2-5). A retrospective analysis was conducted using standardised data collection. Brain PET metabolism was characterised using the Automated Anatomical Labelling Atlas. A Cox model was applied to look for factors influencing survival. Kaplan-Meier method estimated the survival rate. We proposed to develop a predictive 'risk score', categorised into low-risk and high-risk groups, using significant variables entered in multivariate Cox regression analysis. RESULTS Eighty-five patients were included. The overall median survival was 8 years (CI 6.64 to 9.36). Poor prognostic factors were orthostatic hypotension (HR=6.04 (CI 1.58 to 23.12), p=0.009), stridor (HR=3.41 (CI 1.31 to 8.87), p=0.012) and glucose PET hypometabolism in the left insula (HR=0.78 (CI 0.66 to 0.92), p=0.004). Good prognostic factors were time to diagnosis (HR=0.68 (CI 0.54 to 0.86), p=0.001) and use of selective serotonin reuptake inhibitor (SSRI) (HR=0.17 (CI 0.06 to 0.46), p<0.001). The risk score revealed a 5-year gap separating the median survival of the two groups obtained (5 years vs 10 years; HR=5.82 (CI 2.94 to 11.49), p<0.001). CONCLUSION The clinical prognosis factors we have described support published studies. Here, we also suggest that brain PET is of interest for prognosis assessment and in particular in the search for left insula hypometabolism. Moreover, SSRIs are a potential drug candidate to slow the progression of the disease.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    0
    Citations
    NaN
    KQI
    []