High-temperature oxidation and quench behaviour of zircaloy-4 and E110 cladding alloys.

2010 
Abstract This paper gives an overview on the status of knowledge of high-temperature oxidation of the two zirconium alloys Zircaloy-4 and E110 with special emphasis on results obtained during the SARNET period. The tin-bearing alloy Zircaloy-4 and the niobium-bearing alloy E110 are the materials for cladding and structures used in pressurised water reactors of the Western-type and VVERs and RBMKs, respectively. Results of separate-effects tests, single-rod tests, and large-scale bundle experiments are summarised. Focus is directed to oxidation kinetics at high temperature, hydrogen release and absorption by the remaining metal, and behaviour during quenching. Both materials behave very similarly as long as the superficial oxide scales formed during oxidation are dense and protective. Main differences are seen in connection with breakaway oxidation which leads to enhanced oxidation and hydrogen uptake and thus embrittlement and possibly earlier failure of the cladding. The temperature range at which pronounced breakaway is observed is different for the two alloys. The status of modelling of oxidation kinetics, thermo-mechanical behaviour during cooldown and the influence of irradiation are discussed at the end of the paper.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    43
    Citations
    NaN
    KQI
    []