Application of ultrasound elastography for monitoring the effects of TβR1 shRNA therapy on hepatic fibrosis in a rat model.

2021 
Background To investigate the application of ultrasound elastography in monitoring the effects of the transforming growth factor (TGF)-β1 signaling pathway-targeted combination therapy for hepatic fibrosis. Methods 1. Short hairpin RNA (shRNA) constructs targeted towards TβR1 were designed, synthesized, and packaged using an adeno-associated virus (AAV), and the effective target shRNA was selected based on transfection results. 2. Fifty rats were randomly allocated (n = 10 per group) to the (A) control group, (B) model group, (C) 0-week therapy group, (D) 4-week therapy group, and (E) combination therapy group. At weeks 2, 4, 6, 8, 10, and 12, acoustic radiation force impulse (ARFI) elastography was used to measure the liver stiffness, inner diameter of the portal vein diameter, and blood velocity; radio frequency ultrasound imaging was used to measure the abdominal aortic elasticity parameter and pulse wave velocity (PWV) of the rats. 3. At week 12, portal vein puncture was performed to measure the portal venous pressure, and rat liver specimens were obtained for the pathological measurement of the degree of hepatic fibrosis. Results 1. An shRNA interference sequence targeted towards TβR1 was successfully designed, screened, and packaged using an AAV, and small-animal imaging results indicated expression of the specific shRNA in the liver. 2. At week 12, the ultrasound elastography results were significantly different between the experimental groups and the control group (p 0.05). Conclusion CCl4-induced hepatic fibrosis can be treated through shRNA silencing of TβR1. Ultrasound ARFI elastography is superior to external force-assisted elastography as it can reflect the degree of fibrosis in moderate to severe hepatic fibrosis and the variations in the degree of fibrosis after treatment. Portal venous pressure was positively correlated with the degree of fibrosis; with early combination therapy, both the degree of fibrosis and portal venous pressure could be effectively reduced.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    0
    Citations
    NaN
    KQI
    []