Generic Perceptual Loss for Modeling Structured Output Dependencies

2021 
The perceptual loss has been widely used as an effective loss term in image synthesis tasks including image super-resolution, and style transfer. It was believed that the success lies in the high-level perceptual feature representations extracted from CNNs pretrained with a large set of images. Here we reveal that, what matters is the network structure instead of the trained weights. Without any learning, the structure of a deep network is sufficient to capture the dependencies between multiple levels of variable statistics using multiple layers of CNNs. This insight removes the requirements of pre-training and a particular network structure (commonly, VGG) that are previously assumed for the perceptual loss, thus enabling a significantly wider range of applications. To this end, we demonstrate that a randomly-weighted deep CNN can be used to model the structured dependencies of outputs. On a few dense per-pixel prediction tasks such as semantic segmentation, depth estimation and instance segmentation, we show improved results of using the extended randomized perceptual loss, compared to the baselines using pixel-wise loss alone. We hope that this simple, extended perceptual loss may serve as a generic structured-output loss that is applicable to most structured output learning tasks.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    1
    Citations
    NaN
    KQI
    []