Complex nature of the major viral polyadenylated transcripts in Epstein-Barr virus-associated tumors.

1993 
Abstract The most abundant polyadenylated viral transcripts in the Epstein-Barr virus (EBV)-associated tumor nasopharyngeal carcinoma are a family (apparent sizes, 4.8, 5.2, 6.2, and 7.0 kb) of highly spliced cytoplasmic RNAs expressed from the BamHI-I and -A regions of the viral genome in an antisense direction with respect to several viral lytic functions encoded within the same region and concerned with the lytic cycle of the virus. We have called these complementary-strand transcripts. They are also expressed in B cells, including Burkitt's lymphoma and EBV-immortalized marmoset cell lines, and tumors generated in cottontop tamarins in response to EBV infection, but at a lower level. The complete structure of the major 4.8-kb RNAs (seven or eight exons) was determined in this study; the larger, but related, transcripts appear to be produced by differential splicing. The transcriptional promoter for the major complementary-strand transcripts, located in BamHI-I, contains several well-characterized transcriptional control elements (E2A, SP1, and AP1) and is functionally active in both B lymphocytes and epithelial cells. It appears to be a bifunctional viral promoter, as it also contains the initiation codon for a gene (BILF2) that encodes a glycoprotein that is expressed off the other strand. Splicing events create a number of small AUG-initiated open reading frames, one of which has homology to functionally significant regions of the EBV-encoded nuclear antigen 2 and to E2 (in papillomavirus). The complex nature of these transcripts and their potential role in the virus association with malignancy are considered.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    54
    Citations
    NaN
    KQI
    []