RAB1B interacts with TRAF3 to promote antiviral innate immunity

2019 
Nucleic acid-based antiviral innate immunity activates a signaling cascade that induces type I and type III interferons (IFNs), and other cytokines. This signaling, which is highly regulated, is initiated by pattern recognition receptors, such as RIG-I, that sense viral RNA and then signal to the adaptor protein, MAVS. This adaptor protein then recruits additional signaling proteins, including TRAF3 and TBK1, to form a signaling complex that results in IRF3 activation for transcriptional induction of IFN. Here, we show that the GTPase trafficking protein RAB1B positively regulates RIG-I signaling to promote IFN-β induction and the antiviral response. Over-expression of RAB1B increases RIG-I-mediated signaling to IFN-β, while deletion results in reduced signaling of this pathway. Additionally, this loss of RAB1B results in a dampened antiviral response, as Zika virus infection is enhanced in the absence of RAB1B. Importantly, we identified the mechanism of RAB1B action by determining that it interacts with TRAF3 to facilitate the interaction of TRAF3 with MAVS. Thus, we identified RAB1B as a regulator of TRAF3 to promote the formation of innate immune signaling complexes in response to nucleic acid sensing.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    1
    Citations
    NaN
    KQI
    []