Technology developments and first measurements on inverse Low Gain Avalanche Detector (iLGAD) for high energy physics applications

2016 
The first Inverse Low Gain Avalanche Detector (iLGAD) have been fabricated at IMB-CNM (CSIC). The iLGAD structure includes the multiplication diffusions at the ohmic contact side while the segmentation is implemented at the front side with multiple p+ diffusions. Therefore, iLGAD is p on p position-sensitive detector with a uniform electric field all along the device area that guarantees the same signal amplification wherever a particle passes through the sensitive bulk solving the main draw of the LGAD microstrip detector. However, the detection current is dominated by holes flowing back from the multiplication junction with the subsequent increase of the transient current pulse duration in comparison with conventional LGAD counterparts. Applications of iLGAD range from tracking and timing applications, like determination of primary interaction vertex, to medical imaging. The paper addresses the optimization of the iLGAD structure with the aid of TCAD simulations, focusing on the electric field profiles of iLGAD and LGAD microstrip structures and the corresponding gain. The electrical performance of the first fabricated samples is also provided. For the first time, we have the experimental demonstration of the signal amplification of these novel iLGAD detectors.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    10
    References
    7
    Citations
    NaN
    KQI
    []