The development of an implantable catheter system for chronic or intermittent convection-enhanced delivery

2012 
Abstract Convection-enhanced delivery (CED) is a promising technique for the administration of therapeutic agents such as cytotoxics, neurotrophins and enzymes to the brain. In this study we describe the development of an implantable catheter system that is compatible with long-term intermittent CED. Catheters made from fused silica, PEEK or carbothane, and of various internal and external diameters were implanted in the striatum of rats and assessed for patency at 21 or 28 days. A high-rate of catheter blockage was observed with all fused silica and PEEK catheters. Carbothane catheters with an outer diameter of 0.6 mm and an inner diameter of 0.35 mm had significantly lower rates of blockage ( P  ≤ 0.01). Carbothane catheters were then implanted into 4 Large White/Landrace pigs and 4 NIH miniature pigs and infusions undertaken at monthly intervals to evaluate catheter patency and infusate distribution. Catheter patency was demonstrated for a maximum period of 163 days in one animal. Widespread and reproducible intraputamenal CED could be achieved with intermittent drug delivery at flow-rates as high as 5 μl/min. Problems were encountered using the pig model due to catheter distortion from rapid animal growth. In conclusion, it is possible to achieve intermittent high-flow CED with a chronic implanted carbothane catheter with a low rate of catheter blockage.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    23
    Citations
    NaN
    KQI
    []