MAGI-2 downregulation: a potential predictor of tumor progression and early recurrence in Han Chinese patients with prostate cancer.

2020 
Membrane-associated guanylate kinase (MAGUK) family protein MAGUK invert 2 (MAGI-2) has been demonstrated to be involved in the tumorigenic mechanism of prostate cancer. The objective of this study was to investigate the expression of MAGI-2 at mRNA and protein levels. The prognostic value of MAGI-2 in Han Chinese patients with prostate cancer was also investigated. The expression data of MAGI-2 were assessed through database retrieval, analysis of sequencing data from our group, and tissue immunohistochemistry using digital scoring system (H-score). The clinical, pathological, and follow-up data were collected. The expression of MAGI-2 in prostate tumor tissues and prostate normal tissues was evaluated and compared. MAGI-2 expression was associated with clinical parameters including tumor stage, lymph node status, Gleason score, PSA level, and biochemical recurrence of prostate cancer. The relative expression of MAGI-2 mRNA was lower in the tumor tissue in The Cancer Genome Atlas (TCGA) database and sequencing data (P < 0.001). There was no difference in MAGI-2 protein expression between tumor and normal tissues in tissue microarray (TMA) results. MAGI-2 expression was associated with pathological tumor stage (P = 0.02), Gleason score (P = 0.05), and preoperation prostate-specific antigen (PSA; P = 0.04). A positive correlation was identified between MAGI-2 and phosphatase and tensin homolog deleted on chromosome 10 (PTEN) expressions through the analysis of TCGA and TMA data (P < 0.0001). Patients with higher MAGI-2 expression had longer biochemical recurrence-free survival in the univariate analysis (P = 0.005), which indicates an optimal prognostic value of MAGI-2 in Han Chinese patients with prostate cancer. In conclusion, MAGI-2 expression gradually decreases with tumor progression, and can be used as a predictor of tumor recurrence in Chinese patients.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    3
    Citations
    NaN
    KQI
    []