Non‐Local Reconfigurable Sparse Metasurface: Efficient Near‐Field and Far‐Field Wavefront Manipulations

2021 
In recent years, metasurfaces have shown extremely powerful abilities for manipulation of electromagnetic waves. However, the local electromagnetic response of conventional metasurfaces yields an intrinsic performance limitation in terms of efficiency, minimizing their implementation in real‐life applications. The efficiency of reconfigurable metasurfaces further decreases because of the high density of meta‐atoms, reaching 74 meta‐atoms per λ2 area, incorporating lossy tunable elements. To address these problems, strong electromagnetic non‐local features are implemented in a sparse metasurface composed of electronically reconfigurable meta‐atoms. As a proof‐of‐concept demonstration, a dynamic sparse metasurface having as few as 8 meta‐atoms per λ2 area is experimentally realized in the microwave domain to control 2D wavefronts in both near‐field and far‐field regions for focusing and beam‐forming, respectively. The proposed metasurface with its sparsity not only facilitates design and fabrication, but also opens the door to high‐efficiency real‐time reprogrammable functionalities in beam manipulations, wireless power transfer, and imaging holography.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    67
    References
    8
    Citations
    NaN
    KQI
    []