Circular inference in bistable perception

2019 
When facing fully ambiguous images, the brain cannot commit to a single percept and instead switches between mutually exclusive interpretations every few seconds, a phenomenon known as bistable perception. Despite years of research, there is still no consensus on whether bistability, and perception in general, is driven primarily by bottom-up or top-down mechanisms. Here, we adopted a Bayesian approach in an effort to reconcile these two theories. Fifty-five healthy participants were exposed to an adaptation of the Necker cube paradigm, in which we manipulated sensory evidence (by shadowing the cube) and prior knowledge (e.g., by varying instructions about what participants should expect to see). We found that manipulations of both sensory evidence and priors significantly affected the way participants perceived the Necker cube. However, we observed an interaction between the effect of the cue and the effect of the instructions, a finding incompatible with Bayes-optimal integration. In contrast, the data were well predicted by a circular inference model. In this model, ambiguous sensory evidence is systematically biased in the direction of current expectations, ultimately resulting in a bistable percept.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    62
    References
    2
    Citations
    NaN
    KQI
    []